# Machine Learning Course Dependencies # Python 3.8+ required # Core Libraries numpy>=1.21.0 pandas>=1.3.0 scikit-learn>=1.0.0 scipy>=1.7.0 # Visualization matplotlib>=3.4.0 seaborn>=0.11.0 plotly>=5.3.0 # Deep Learning tensorflow>=2.7.0 torch>=1.10.0 keras>=2.7.0 # Gradient Boosting xgboost>=1.5.0 lightgbm>=3.3.0 catboost>=1.0.0 # Utilities jupyter>=1.0.0 jupyterlab>=3.2.0 ipython>=7.30.0 notebook>=6.4.0 # Data Processing openpyxl>=3.0.9 xlrd>=2.0.1 statsmodels>=0.13.0 # Model Evaluation mlxtend>=0.19.0 imbalanced-learn>=0.8.0 shap>=0.40.0 # Web Framework (for interactive demos) streamlit>=1.15.0 dash>=2.7.0 # Documentation sphinx>=4.3.0 nbsphinx>=0.8.0